

ACTUALITZACIÓ EN DIABETIS EN ATENCIÓ PRIMÀRIA

GEDAPS-REDGDPS

BARCELONA, 29 DE JUNY 2018 AUDITORI AXA

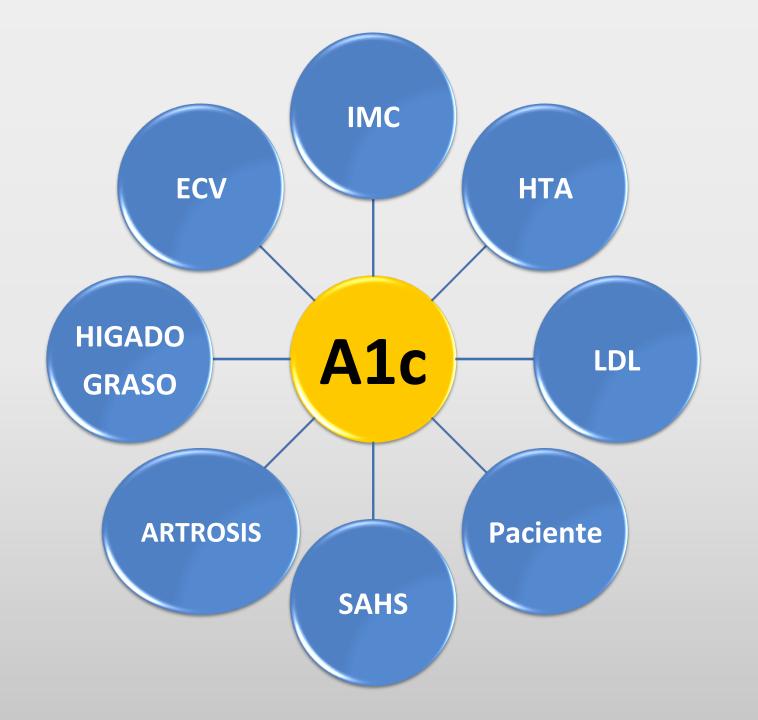
Ús dels nous fàrmacs segons comorbiditas

Dr. Carlos Gómez Ruiz
ABS Collblanc
Consorci Sanitari Integral
L'Hospitalet de Llobregat
carlos.gomez@sanitatintegral.or

Declaración de conflictos de interés

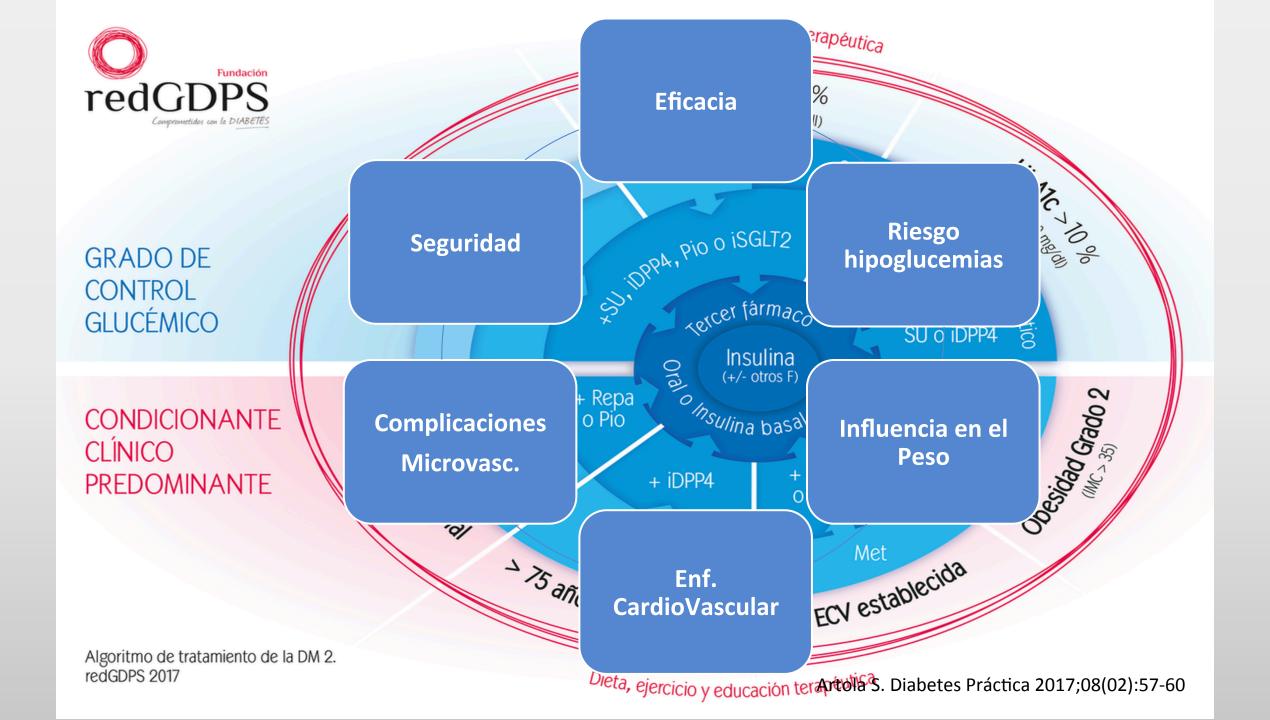
 He recibido honorarios de ALMIRALL, ASTRA-ZENECA, BOEHRINGER INGELHEIM, FAES FARMA, GSK, LILLY, MENARINI, MSD, NOVARTIS, NOVO NORDISK, SANOFI.

¿Qué nos permiten los nuevos TTOs?


Personalizar el Tratamiento

- Características del paciente
- Comorbilidades
- Valoración Efectos adversos

Riesgo Hipoglucemias


- Edad Avanzada y/o fragilidad
- Demencia
- Insuf. Renal
- Hipoglucemias previas

Cambiemos patrón glucocéntrico

Por patrón Individuocéntrico

¿Qué fármaco antidiabético me planteo en un paciente con Enfermedad Cardiovascular?

Dieta, ejercicio y educación terapéutica HbA1c 8 - 10 % (GME 180-240 mg/dl) MBARC 10% Constanting as zercer fármaco Insulina Insulina (+/- otros F)

Insulina (+/- otros F)

Insulina basal Obesidad Grado 2 + Repa o Pio + iSGLT2 o arGLP1 ECV establecida años o Fragilidad Dieta, ejercicio y educación terapéutica

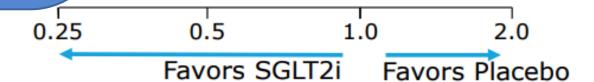
	EMPA-REG (n:7020)	CANVAS (n:10142)	LEADER (n:9340)
INTERVENCIÓN	Empagliflozina/placebo	Cangliflozina/placebo	Liraglutida/placebo
CRITERIOS INCLUSIÓN	DM2>18a + ECV; IMC<45 FG>30	DM2 +ECV >30 a + de 50 a y 2 ó + FRCV FG>30	DM2 +ECV > 30 a + de 50 a + IRC o IC + de 60 a y 1 ó + FRCV
A1c	7-10%	7-10,5%	>7
EDAD	63,1	63,3	64,3
IMC (kg/m2)	30,7	32	32,5
DURACION DIABETES	57%> 10 a	13,5 a	12,8 a
MEDIANA	3,1 a	2,4 a	3,8 a
ECV/ICC (%)	99/10	65,6/14,4	81/18

REDUCCIONES CON EMPA.

 $MACE \rightarrow 14\%$

MUERTE CV → 38%

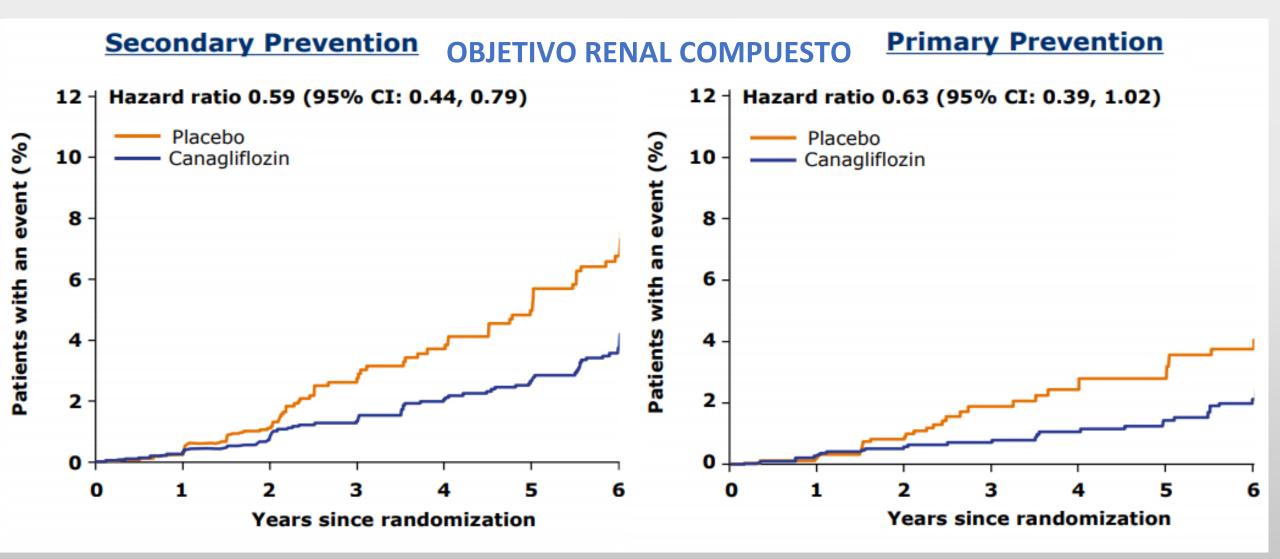
 $MCC \rightarrow 32\%$

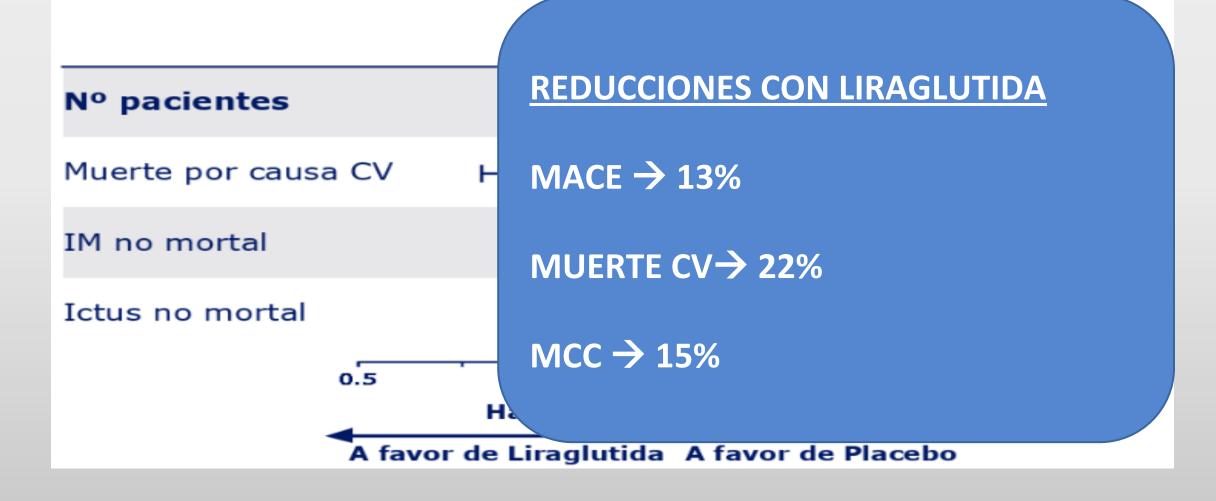

HOSP. IC \rightarrow 35%

Hazard ratio (95% CI)

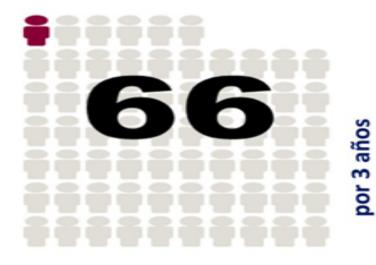
REDUCCIONES CON CANA.

 $MACE \rightarrow 14\%$

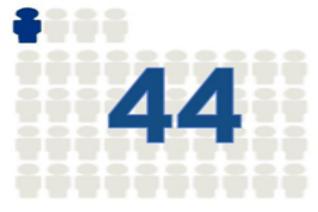

HOSP. IC \rightarrow 33%

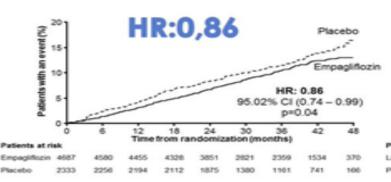

N Engl J Med 2017;377:644-57

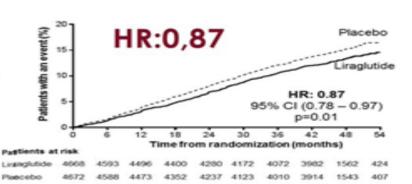
¿EXISTEN DIFERENCIAS ENTRE LA PREVENCIÓN PRIMARIA Y SECUNDARIA?



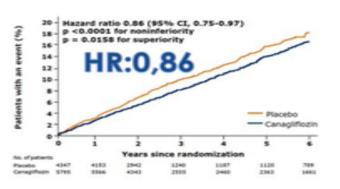
	Inh. So	GLT-2	aGLP-1			
ESTUDIO	EMPA-REG	CANVAS	ELIXA	LEADER	SUSTAIN	EXSCEL
	Empagliflozin	Canagliflozin	Lixisenatide	Liraglutide	Semaglutide	EXQW
MACE-3	0.86	0.86	1.02	0.87	0.74	0.91
	0.74-0.99	0.75-0.97	0.89-1.17	0.78-0.97	0.58-0.95	0.83-1.00
MUERTE CV	0.62	0.87	0.98	0.78	0.98	0.88
	0.49-0.77	0.72-1.06	0.78-1.22	0.66-0.93	0.65-1.48	0.76-1.02
IM NO FATAL	0.87	0.85	1.03	0.88	0.74	0.97
	0.70-1.09	0.69-1.05	0.87-1.22	0.75-1.03	0.51-1.08	0.85-1.10
ICTUS NO FATAL	1.24	0.90	1.12	0.89	0.61	0.85
	0.92-1.67	0.71-1.15	0.79-1.58	0.72-1.11	0.38-0.99	0.70-1.03
HOSP. INSUF.	0.65	0.67	0.96	0.87	1.11	0.94
CARD.	0.50-0.85	0.52-0.87	0.75-1.23	0.73-1.05	0.77-1.61	0.78-1.13
MORT. TOTAL	0.68	0.87	0.94	0.85	1.05	0.86
	0.57-0.82	0.74-1.01	0.78-1.13	0.74-0.97	0.74-1.50	0.77-0.97

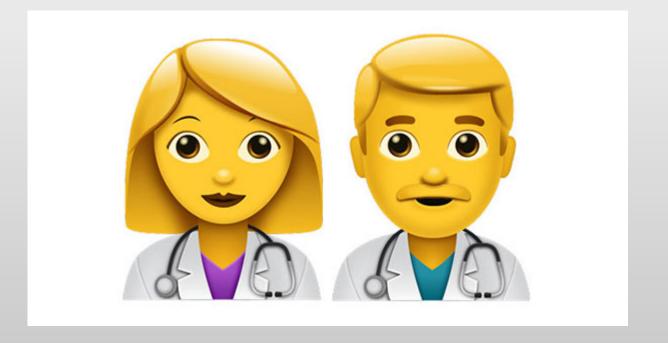




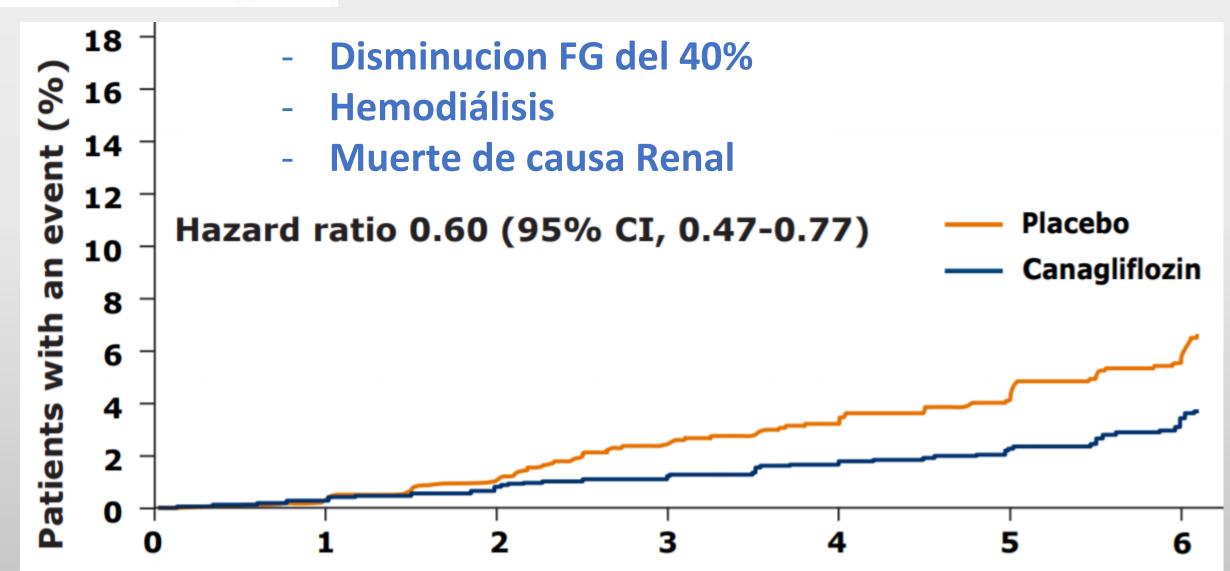


Por 5 años





¿Y EN UN PACIENTE CON NEFROPATÍA DIABÉTICA? ¿Y PARA EVITARLA?



Empeoramiento Renal:

- Progresión a MacroALB.
- Aumento x2 de Creat con disminución FG<45.
- Hemodiálisis.

- Muerte de causa Renal.

Lower Rates of Hospitalization for Heart Failure and All-Cause Death in New Users of SGLT-2 Inhibitors: The CVD-REAL Study

Circulation2017 Jul 18;136(3):249-259

Lower Risk of Cardiovascular Events and Death Associated with Initiation of SGLT-2 Inhibitors versus Other Glucose Lowering Drugs - Real World Data Across Three Major World Regions with More Than 400,000 Patients: The CVD-REAL 2 Study

	CVD REAL 1 (N: 309.056)	CVD REAL 2 (N: 484.412)
TIPO DE ESTUDIO	REAL WOLRD STUDY Propensity score matching	REAL WORLD STUDY Propensity score matching
CRITERIOS INCLUSIÓN	Inicio iSGLT2 u otro TTO DM2>18 A, + de 1 año del dx	Inicio iSGLT2 u otro TTO DM2>18 A, + de 1 año del dx
OBJETIVO	Ingreso por Insuf. Cardiaca MCC	Ingreso por Insuf. Cardiaca MCC IM Ictus
Inh. SGLT2	54%Canagliflozina 36 % Dapagliflozina 10% Empaglifozina	75%Dapaglifozina 9%Empagliflozina 4% Canagliflozina
EDAD	57 a	57 a
ECV/MICROVASC	13%/27%	27%/53%

HOSPITALIZACIÓN POR INSUFICIENCIA CARDIACA

Database	N	# of events		HR (95% CI)	Database	N	# of events		HR (95% CI)
US	233,798	298	н	0.55 (0.44, 0.69)	Korea	336,644	5149		0.87 (0.82, 0.92)
Norway	25,050	278	н	0.62 (0.49, 0.79)	Japan	67,780	565	HEH	0.75 (0.63, 0.89)
Denmark	18,468	167	+=-	0.77 (0.59, 1.01)	Singapore	2726	67	-	0.62 (0.38, 1.02)
Sweden	18,378	191	H=	0.61 (0.45, 0.82)	Israel	19,472	128		0.53 (0.37, 0.75)
UK	10,462	16	-	0.36 (0.12, 1.13)	Canada	16,064	88	-	0.36 (0.24, 0.56)
Germany	2900	11		0.14 (0.03, 0.68)	Total	442,686	5997	•	0.64 (0.50, 0.82)
Total	309,056	961	•	0.61 (0.51, 0.73)				Four SCI TO	- Favor of LD
		Hazard Ratio: 0.05 0.10	0.25 0.50 1.00	Favor oGLD				0.25 0.50 1.00	Favor oGLD 2.00

MORTALIDAD POR CUALQUIER

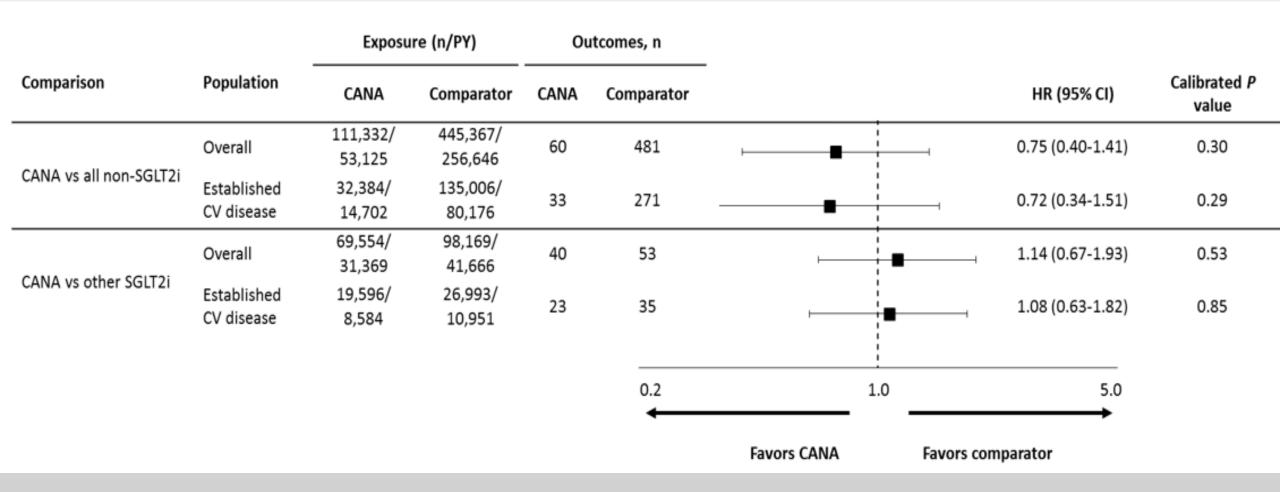
CALICA

Database	N	# of events		HR (95% CI)
US	143,264	250	H=-	0.38 (0.29, 0.50)
Norway	25,050	364	H	0.55 (0.44, 0.68)
Denmark	18,468	323	H#H	0.46 (0.37, 0.57)
Sweden	18,378	317	⊢■ →	0.47 (0.37, 0.60)
UK	10,462	80		0.73 (0.47, 1.15)
Total	215,622	1334	•	0.49 (0.41, 0.57)
			Favor SGLT2i ←	Favor oGLD
		Hazard Ratio:	0.25 0.50 1.00	2.00

Database	N	# of events		HR (95% CI)
Korea	336,644	7990	•	0.81 (0.78, 0.85)
Japan	67,780	1061	HBH	0.65 (0.57, 0.74)
Singapore	2726	93		0.62 (0.41, 0.95)
Israel	19,472	313	⊢= →	0.45 (0.36, 0.57)
Canada	16,064	331	⊢≣ ⊣	0.48 (0.39, 0.59)
Total	442,686	9788	-	0.60 (0.47, 0.76)
		Hazard Ratio:	Favor SGLT2i ← 0.25 0.50 1.00	Favor oGLD

Resultados por subgrupos con y sin enfermedad cardiovascular establecida

		Event Rate	Hazard Ratio (95% CI)	P-Value Interaction
All-Cause Death	Prior CVD No prior CVD	1.98 0.70	⊢ ■	0.198
Hospitalization for Heart Failure	Prior CVD No prior CVD	3.73 0.60	├──	0.738
HHF or ACD	Prior CVD No prior CVD	5.31 1.23		0.303
МІ	Prior CVD No prior CVD	1.15 0.30	⊢■ →1	0.595
Stroke	Prior CVD No prior CVD	3.73 0.74		0.299
			6.25 0.50 1.00	- favor oGLD 2.00


EFECTOS ADVERSOS ISGLT2

• CETOACIDOSIS DIABÉTICA EUGLUCÉMICA

- MUY raro y MAYORITARIAMENTE en DM tipo 1
- Incidencia menor a 0,5 por 1000 pacientes/año.

CARDIOVASCULARES

- <u>Deplección de volumen</u> → 1,5 a 3,5% de los pacientes. Mayor riesgo en pacientes ancianos y/o tratamiento con diuréticos (sobretodo de ASA).
- <u>Amputaciones</u> → Estudio CANVAS aumento casi doble en el grupo tratado con canagliflozina. ¾ de las amputaciones se localizaron en los dedos o metatarsos.
- NNH CANVAS: 323 // CANVAS-R: 270.

Diabetes Obes Metab 2018 Jun 25 (pendiente imprimir)

EFECTOS ADVERSOS ISGLT2

INFECCIONES GENITO-URINARIAS:

- NO evidencia de incremento de ITUs.
- Incremento de infecciones genitales hasta un 10% con predominio femenino. Pueden presentar recuerrencia pero con menor frecuencia.
- NNH 5 en mejeres y 10 en hombres.

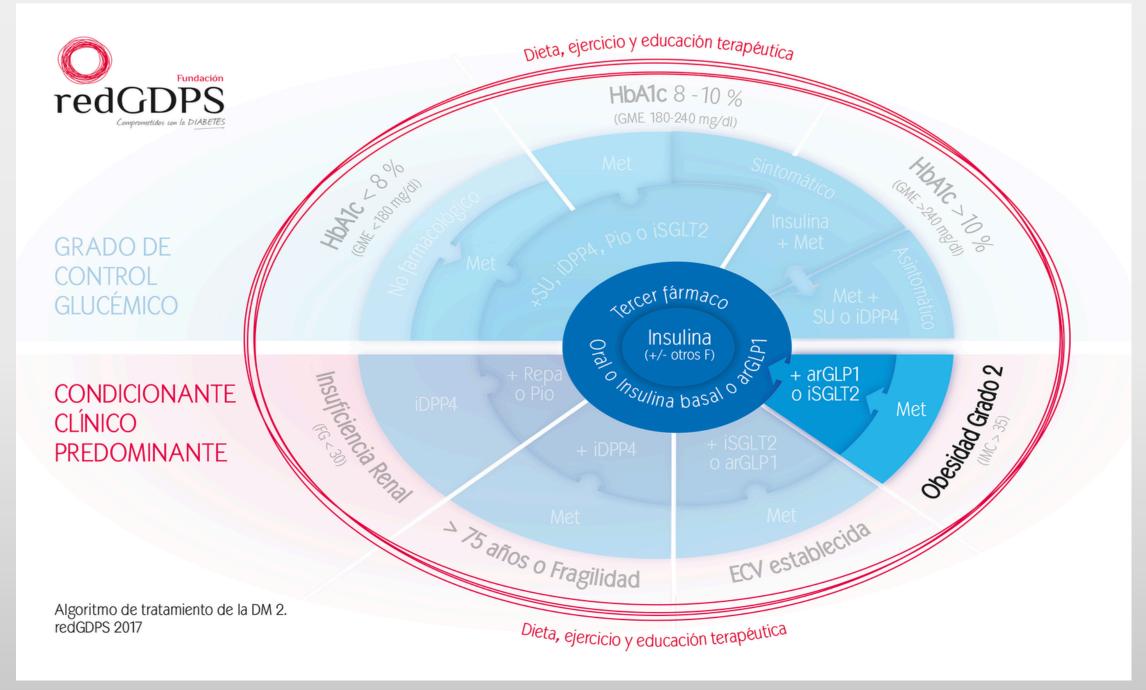
• FRACTURAS ÓSEAS

- En CANVAS se observó una mayor tasa de fracturas en pacientes tratados con canagliflozina vs placebo con HR 1,26, (IC del 95%: 1,04 a 1,52).
- NNH: 286

EFECTOS ADVERSOS aGLP1

DIGESTIVOS

- Náuseas, vómitos y diarreas
- Efecto adverso más común aprox 25% y mayoritariamente limitado.


CARDIOVASCULARES:

- Aumento frecuencia cardiaca 1 4 latidos por minuto.
- NO Evidencia de aumento Pancreatitis y neoplasia pancreática

¿Qué puedo hacer con mis pacientes diabéticos con obesidad?

Effect of antidiabetic agents added to metformin on glycaemic control, hypoglycaemia and weight change in patients with type 2 diabetes: a network meta-analysis

PESO

- SULFONILUREAS → 2,17 KG
- GLINIDAS → 1,40 KG
- GLITAZONAS → 2,46 kg
- INSULINA BASAL → 1,38 kg
- INS. PREMEZCLAS \rightarrow 3,41 kg

HIPOGLUCEMIAS

- SULFONILUREAS → OR: 8.8
- GLINIDAS \rightarrow OR: 10.5
- INSULINA BASAL → OR: 4,7
- INS. PREMEZCLAS → OR: 17.8

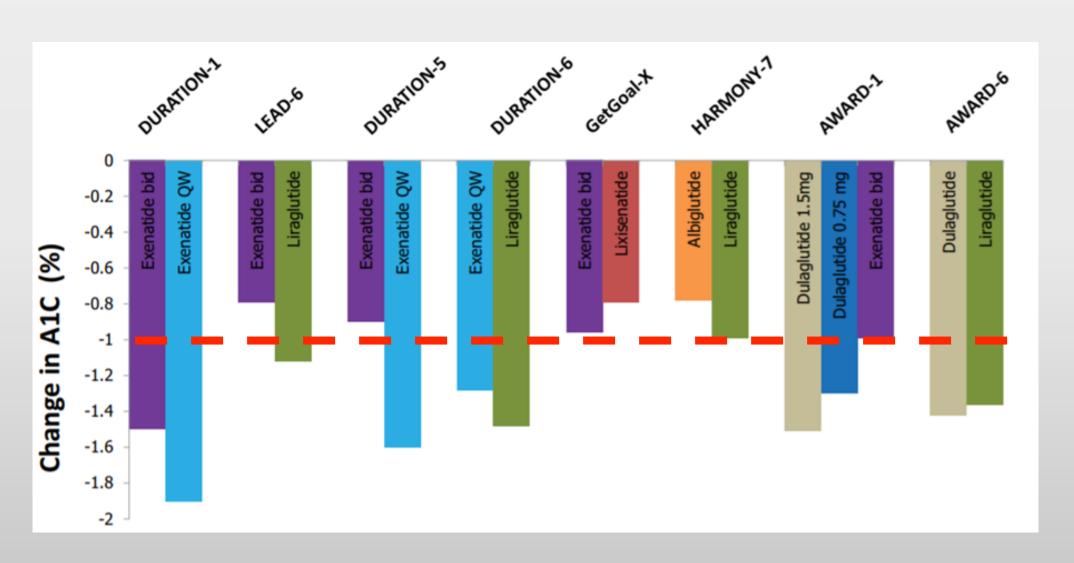
- Num de estudios 39: 13 con SU (solo uno incluía glibenclamida)
- Edad: 55 a 68 años
- A1c 7'5-9'5%
- Dx DM2: 5 a 10 años

<u>Diabetes Obes Metab.</u> 2012 Sep; 14 (9): 810-20

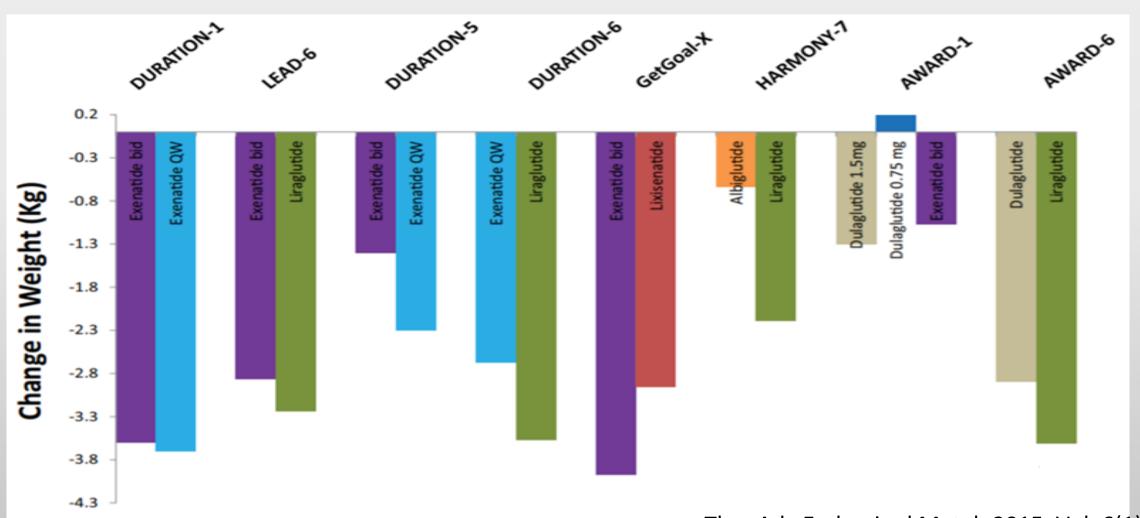
Los análogos GLP1

arGLP1 Acción curta

- Semivida 2-5 h.
- Reducción GPP elevada.
- Disminución vaciado gástrico.
- Reducción A1c<1%


arGLP1 Acción larga

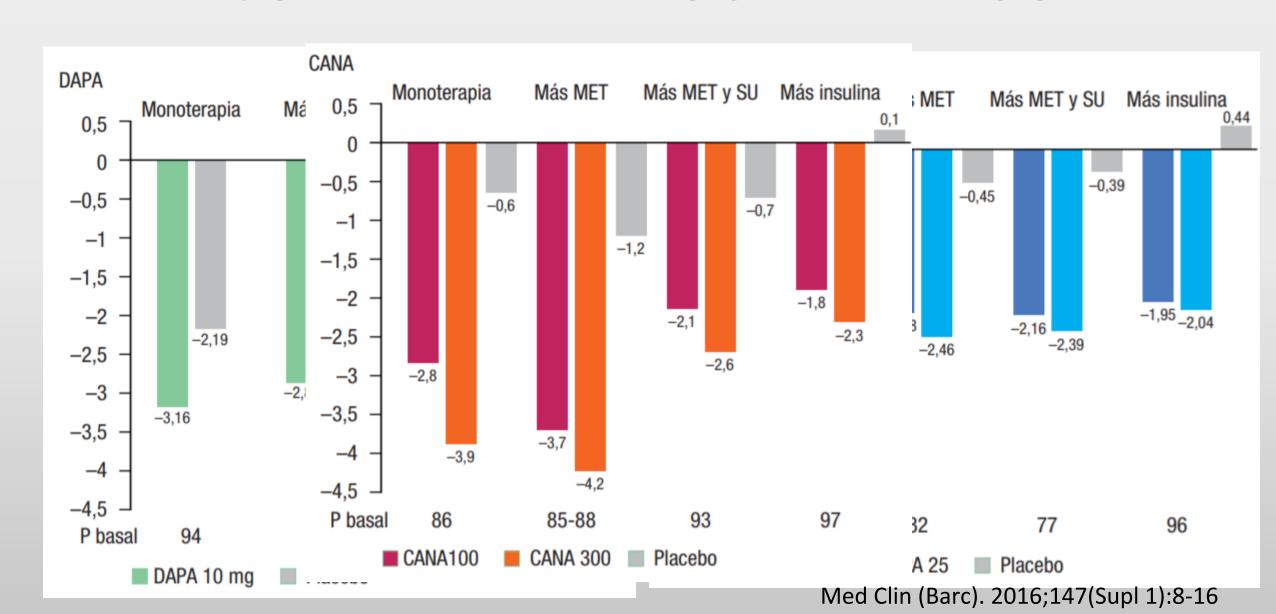
- Semivida 12 h días.
- Reducción elevada dFGP y 24 hores
- Reducción glucosa en ayunas elevada
- taquifilaxia sobre vaciado gástrico
- Reducción A1c>1%


LIXISENATIDA EXENATIDA

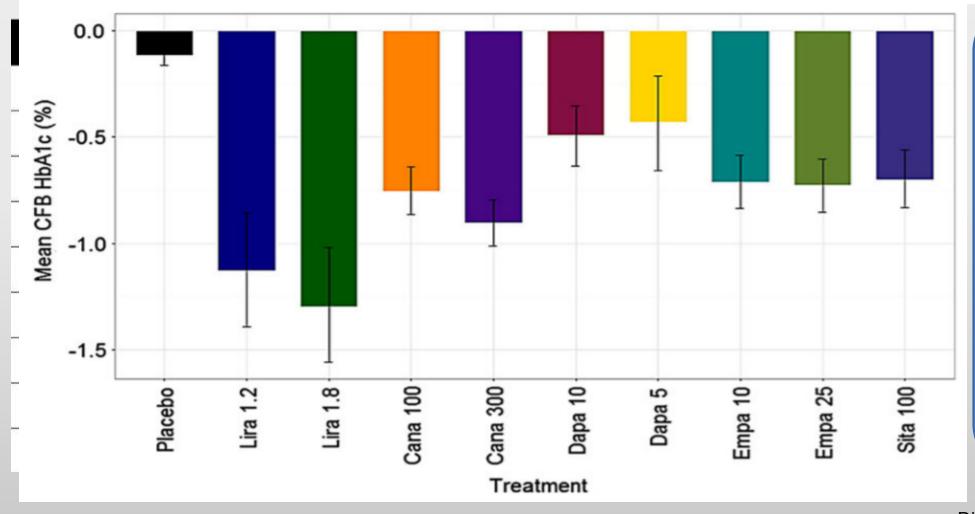
EXENATIDA LAR
LIRAGLUTIDA
DULAGLUTIDA

Comparativa de aGLP1 – A1c

Comparativa de aGLP1 - Peso



Ther Adv Endocrinol Metab 2015, Vol. 6(1) 19–28


Comparativa Inh SGLT2 – A1c

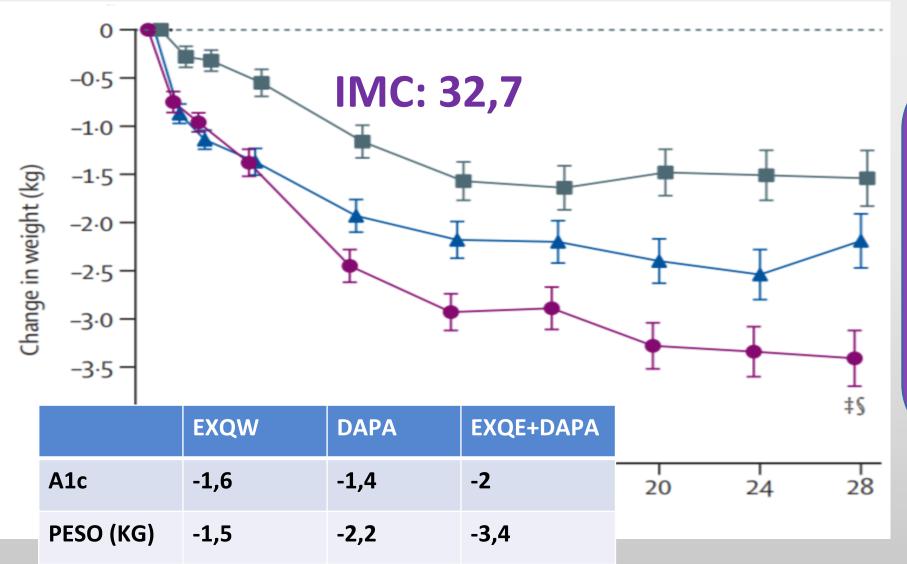
	Tratamiento	Dosis	Tiempo (semana	as) Δ HbA1c	Δ Ponderal
Dapagliflozina				DEDUCCIÓ	
Nauck et al, 2014 ⁵	DAPA frente a SU + MET	10 mg	104	REDUCCIO	HbA1c (+ MET)
Rosenstock et al., 2016	DAPA + PIO	10 mg	24		<u> </u>
Wilding et al., 2014 ⁷	DAPA + insulina	10 mg	104		
Jabbour et al., 20148	DAPA + SITA	10 mg	24	DADAGLIEG	TINIA
Rosenstock et al.,20159	SAXA + DAPA + MET	10 mg	24	DAPAGLIFC	ZINA
	vs SAXA o DAPA			40.140	70/
mpagliflozina				10 MG \rightarrow -0,	, / %
Roden et al., 2013 ¹⁰	EMPA	10 mg	24	·	
		25 mg			
Häring et al., 2014 ¹¹	EMPA + MET	10 mg	24		NIEDIA I
		25 mg		CANAGLIFO	OZINA
Häring et al., 2013 ¹²	EMPA + MET+ SU	10 mg	24	400 140	
		25 mg		100 MG \rightarrow -(0'79%
Rosenstock et al., 2015 ¹³	EMPA + insulina $(+/- MET +/- SU)$	10 mg	78		
		25 mg		$300 \text{ MG} \rightarrow -0$	0.94%
Ridderstråle et al., 2014 ¹⁴	EMPA 25 mg + MET vs. SU + MET	25 mg	104		,,,,,
Canagliflozina					
Stenlöf et al., 2013 ¹⁹	CANA	100 mg	26	ENIDAGLIEG	
		300 mg		EMPAGLIFC)ZINA
Lavalle-González et al., 201320	CANA + MET	100 mg	26	40.140	700/
		300 mg		10 MG \rightarrow -0,	,70%
Wilding et al., 2013 ²¹	CANA + MET + SU	100 mg	26		
		300 mg		$25 \text{ MG} \rightarrow -0$	75%
Schernthaner et al., 2013 ²²	CANA + MET+ SU	300 mg	52		
	frente a SITA + MET + SU				
Bode et al., 2013 ²³	Sujetos mayores	100 mg	26		
		300 mg			
Neal et al., 2015 ²⁴	CANA + insulina	100 mg	18		
		300 mg		↓ 0,72% ^a	↓ 2,3 kg ^a

COMPARATIVA ISGLT-2 - PESO

Liraglutide Versus SGLT-2 Inhibitors in People with Type 2 Diabetes: A Network Meta-Analysis

Pérdidas de peso similares pero con e x c e p c i o n e s (Lirag. 1'2mg vs cana 300)

Mayor potencia Lirag. vs resto iSGLT2


¿NOS ATREVEMOS CON LA COMBINACIÓN

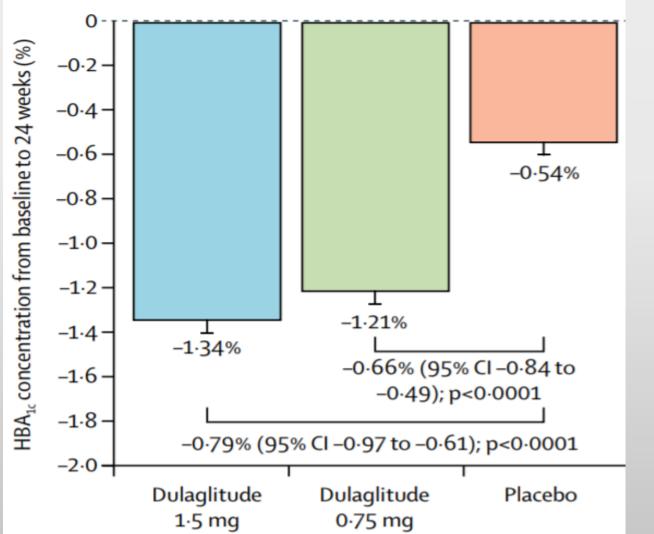
→ ISLGT2 + AGLP1?

Diabetes Ther (2018) 9:919-926

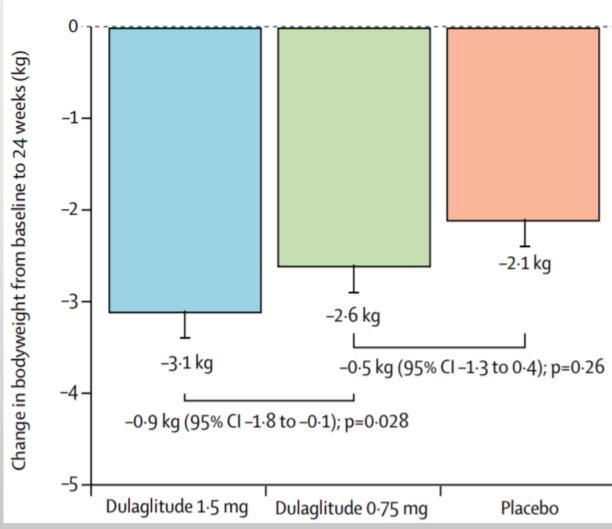
Study characteristics	DURATION-8 study (simultaneous start) ^a	AWARD-10 study (sequential use) ^b	Goncalves and Bell (simultaneous start) ^c	Goncalves and Bell (sequential use) ^c	Saroka et al. (sequential use) ^d
Duration of DM (years)	7.6	9.2	11	9.3	13.8
Duration of study (weeks)	28	24	62	76	45
Number of patients	231 (on combination)	142	33	46	75
HbA1c (initial) (%)	9.3	8.0	9.1	8.5	7.9
HbA1c change (%)	- 2.0	- 1.34	- 2.0	- 0.9	- 0.47
Weight change (kg)	- 3.4	- 3.1	- 10	- 4	- 5.45
SBP change (mmHg)	- 4.2	- 4.5	- 13	- 7	- 4
	Prospective studies		Observational studies		

DURATION-8 → EXQW + DAPA

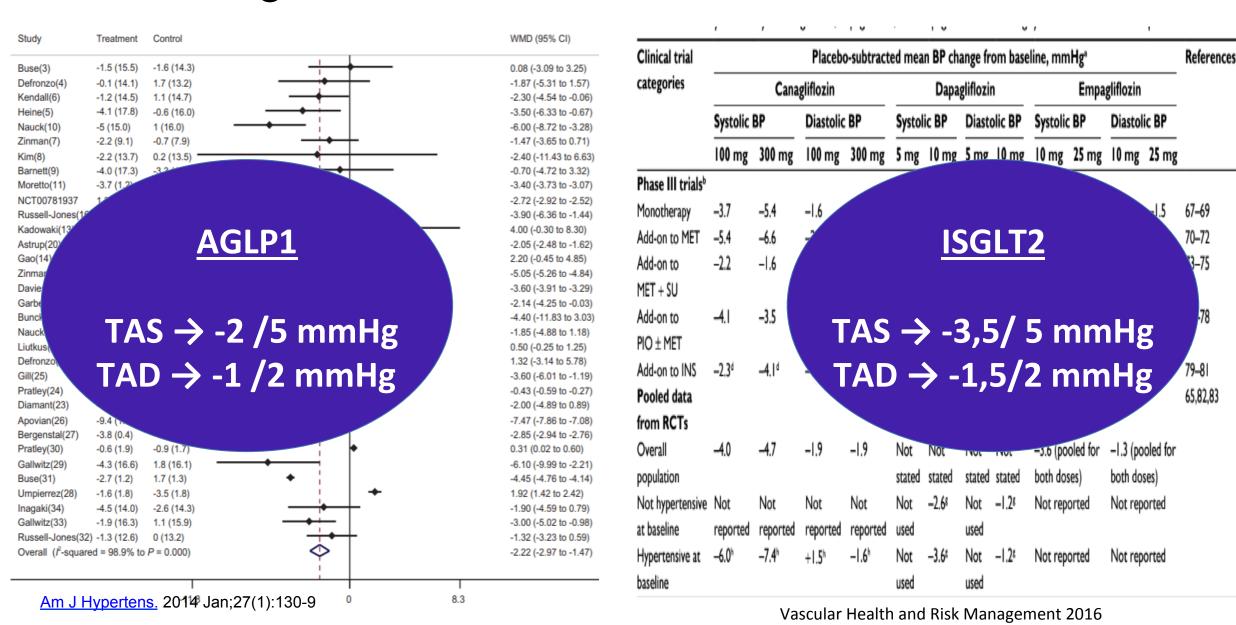
RESULT. EXQW+DAPA:


REDUCCIÓN A1C: 2%

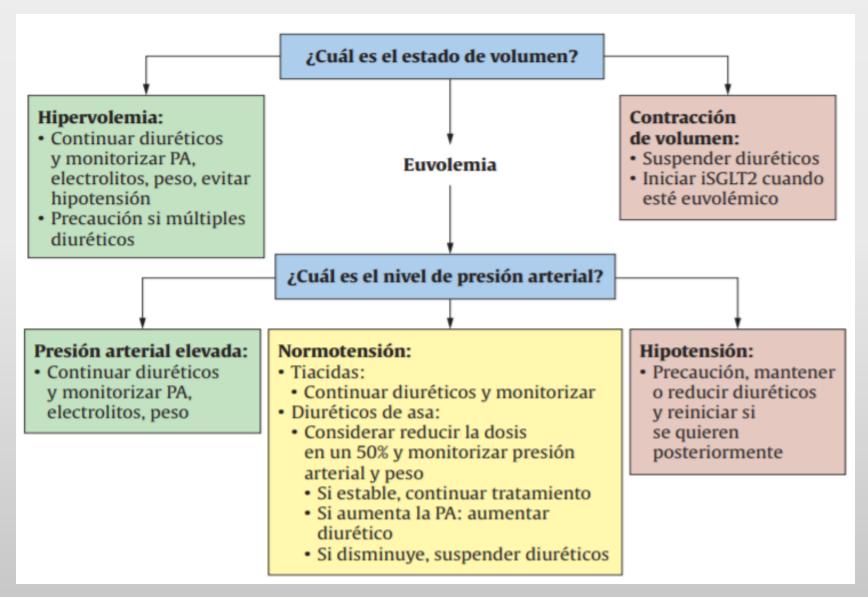
REDUCCIÓN PESO: 3,4 KG


AWARD-10 -> Dulaglutida añadido a inh SGLT-2

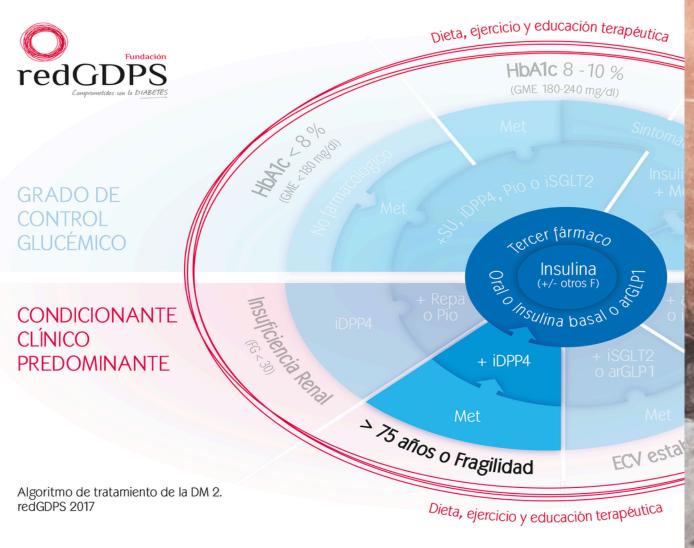
Lancet Diabetes Endocrinol 2018 May;6(5):370-381


A1c: 8

IMC 32,5

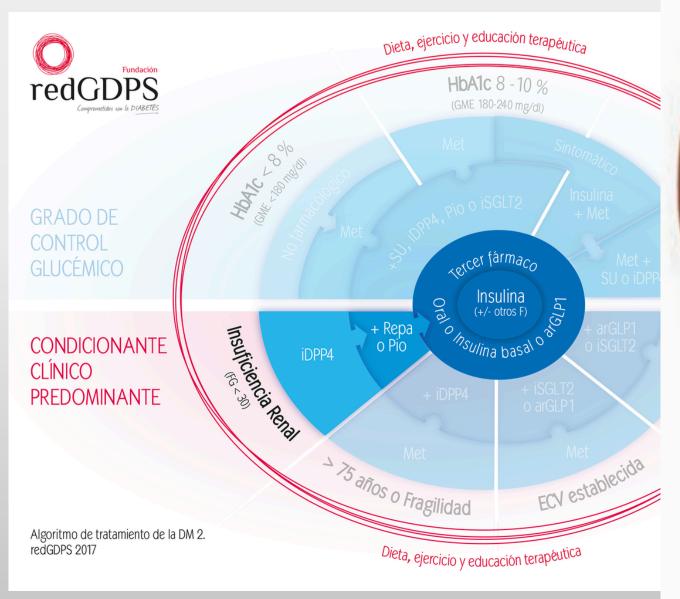


¿Y SI MI PACIENTE TIENE HTA?



ISGLT-2 Y SU RELACIÓN CON LOS ANTI-HTA

Diabetes Ther2017 Oct; 8(5): 953–962 Circulation. 2016;134:1915-1917

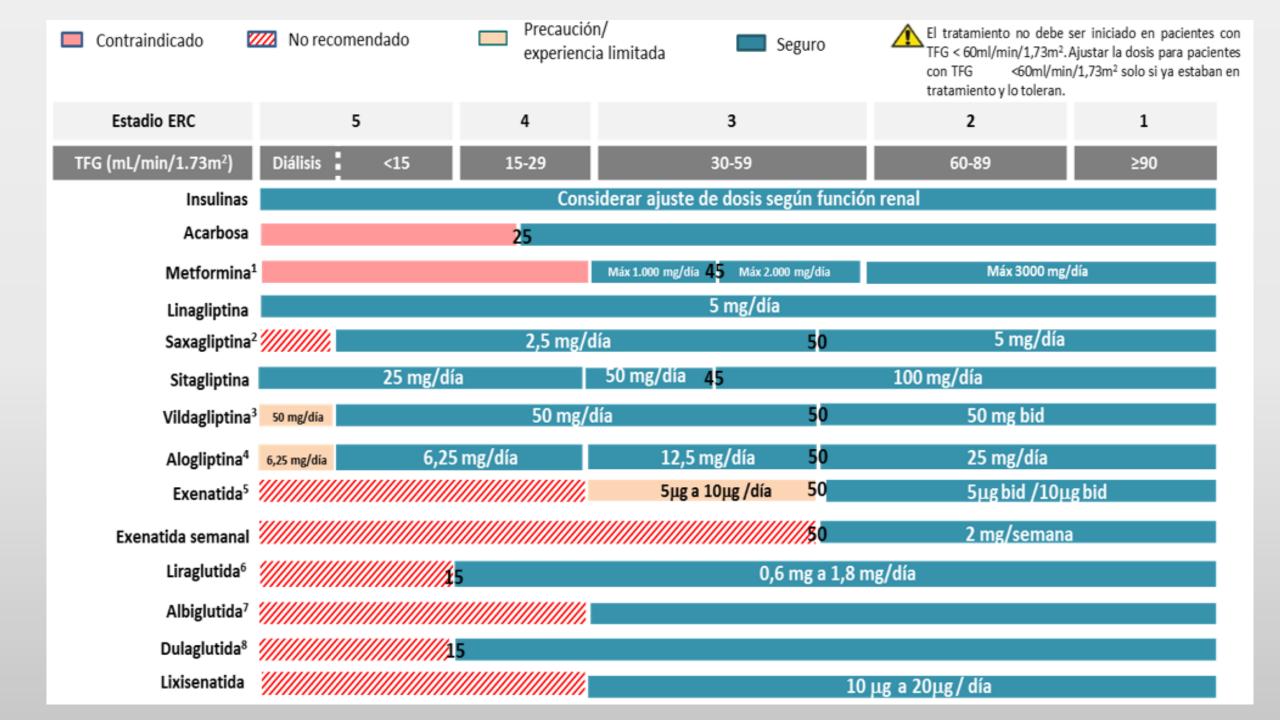

fragilidad

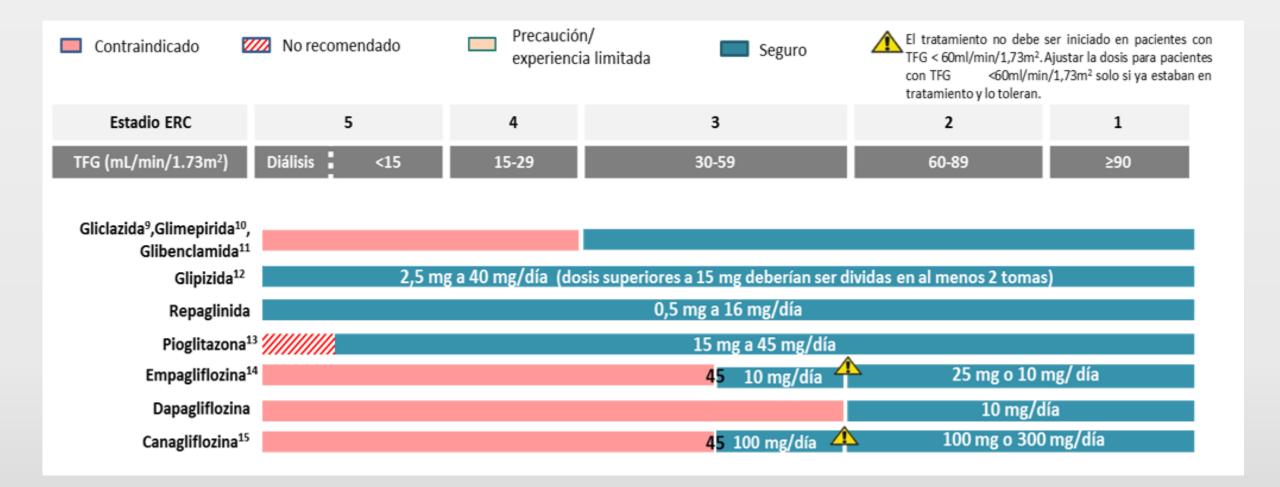
https://unsplash.com/photos/q3FihXQ-13M

FG inferior a 30

- El tratamiento antidiabético y los objetivos de control glucémico del anciano y en el paciente con IRC severa:
 - Individualizar según características biopsicosociales.
 - Los beneficios del tratamiento antidiabético intensivo son limitados.

Nuestro objetivo debe ser:


- Mejorar la calidad de vida.
- preservar la funcionalidad.
- evitar los efectos adversos, **ESPECIALMENTE** las hipoglucemias.



UN EJEMPLO EN "VIDA REAL"

HIPOGLUCEMIA SECUNDARIO A TRATAMIENTO CON GLICLAZIDA EN PACIENTE DE 80 AÑOS SECUNDARIO A ESCASA INGESTA POR GEA.

- 1º ó 2º ESCALÓN TERAPÉUTICO:
- IDPP-4
- LOS MOTIVOS:
- **Demostrada la eficacia y seguridad** de vildagliptina, sitagliptina, saxagliptina, linagliptina, alogliptina en ancianos y/o con IRC
- NO inducen hipoglucemias (mecanismo dependiente de la glucosa).
- NO modifican el peso corporal
- NO presentan interacciones medicamentosas significativas

Y SI MI PACIENTE TIENE HIPOGLUCEMIAS CON LAS "INSULINAS CLÁSICAS"

Patient-level meta-analysis of the EDITION 1, 2 and 3 studies: glycaemic control and hypoglycaemia with new insulin glargine 300 U/ml versus glargine 100 U/ml in people with type 2 diabetes

	Patient-level meta-analysis		EDITION 1		EDITION 2		EDITION 3	
	Gla-300 (n =	Gla-100 (n =	Gla-300 (n =	Gla-100 (n =	Gla-300 (n =	Gla-100 (n =	Gla-300 (n =	Gla-100 (n =
	1247)	1249)	404)	403)	404)	407)	439)	439)
Age, years	58.7 (9.3)	58.5 (9.5)	60.1 (8.5)	59.8 (8.7)	57.9 (9.1)	58.5 (9.2)	58.2 (9.9)	57.2 (10.3)
HbA1c, %	8.31 (0.92)	8.32 (0.91)	8.15 (0.78)	8.16 (0.77)	8.26 (0.86)	8.22 (0.77)	8.51 (1.04)	8.57 (1.07)
Body weight, kg	99.9 (22.8)	99.9 (21.7)	106.2 (21.5)	106.4 (20.0)	98.7 (22.3)	98.0 (20.8)	95.1 (23.3)	95.6 (22.6)
BMI, kg/m^2	34.7 (6.9)	34.8 (6.4)	36.6 (6.8)	36.6 (6.1)	34.8 (6.6)	34.8 (6.1)	32.8 (6.9)	33.2 (6.6)
Duration of diabetes, years	12.7 (7.2)	12.6 (7.5)	15.6 (7.2)	16.1 (7.8)	12.7 (7.1)	12.5 (7.0)	10.1 (6.5)	9.6 (6.2)

<u>Diabetes Obes Metab</u>. 2015 Sep; 17(9): 859–867

Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes

N: 7637

Inclusión:

DM2 A1c>7% ó < 7% si + 20 UI Insu. Basal >50 a con FRCV ó ECV // >60 a + (nefropatía + HVI + Disf. VI + ITB<0,9)

Exclusión

IM o lctus < 60 días

IRC ó IC ó IH avanzada

Características clínicas

Edad: 65 a A1c: 8'4% Duración DM2: 16,4 a Insulización previa: 84%

ECV: 63%

Mediana Seguimiendo → aprox. 2 a

Objetivo Primario: MACE-3 degludec vs Glargina U100.

Objetivo Secundario: Hipoglucemias Severas

Y PARA ACABAR UN POQUITO DE.....

"FOIE GRAS"

1. Estudio LEAN (Liraglutide Efficacy and Action in NASH)

ECA. N:52.

9 (39%) de 23 pacientes que recibieron liraglutida y biopsia hepática al final del tratamiento con resolución esteatohepatitis en comparación con dos (9%) de 22 en placebo.

3 (38%) de 8 pacientes DM2 alcanzaron el objetivo con liraglutida.

2. Estudio E-LIFT

ECA. N: 50. Esteatosis hepatica (MRI-PDFF) A1c 9% IMC 29 Objetivo Primario -> cambio en el contenido de grasa hepática mediado MRI-PDFF. Objetivo Secundario -> Cambios AST, ALT, gGT.

Resultados: reducción significativa en el grupo empagliflozina (16.2-11.3%; P <0.0001) y se encontró un cambio no significativo en el grupo control (16.4-15.5%; P = 0.057). Los dos grupos mostraron un significativo diferencia para el cambio en el nivel de ALT en suero (p = 0,005) y diferencias no significativas para los niveles de AST (P = 0.212) y GGT (P = 0.057).

Pharm Piogl first-lir

Seco

MUCHAS GRACIAS

Y SOBRETODO

QUE OS AYUDE EN VUESTRA PRÁCTICA DIARIA